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A number of formulae for numerically approximating derivatives using finite differences are
presented in the videos for Week 19. These formulae can be derived through the use of Taylor
expansions. Recall that the Taylor expansion of a function u(x) about the point x = a is given
by

u(x) = u(a) + (x− a)u′(a) +
1

2
(x− a)2u′′(a) +O((x− a)3), (1)

where

u′(a) =
du

dx
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x=a

, u′′(a) =
d2u

dx2

∣∣∣∣
x=a

. (2)

Now, evaluating the Taylor expansion in (1) at x = a±∆x leads to

u(a+∆x) = u(a) + ∆xu′(a) +
1

2
(∆x)2u′′(a) +O((∆x)3), (3a)

u(a−∆x) = u(a)−∆xu′(a) +
1

2
(∆x)2u′′(a) +O((∆x)3). (3b)

We could also evaluate the Taylor expansion in (1) at x = a± 2∆x to find

u(a+ 2∆x) = u(a) + 2∆xu′(a) + 2(∆x)2u′′(a) +O((∆x)3), (4a)

u(a− 2∆x) = u(a)− 2∆xu′(a) + 2(∆x)2u′′(a) +O((∆x)3). (4b)

In fact, we could continue the process to find Taylor expansions for u(a± 3∆x), u(a± 4∆x), or
even u(a ± (1/2)∆x). By taking linear combinations of these Taylor expansions, it is possible
to obtain finite-difference formulae for any derivative.

For example, the forwards difference formula for the first derivative can be obtained by
considering the combination u(a+∆x)− u(a). Using the Taylor expansion in (3a) shows that

u(a+∆x)− u(a) = u(a) + ∆xu′(a) +
1

2
(∆x)2u′′(a) +O((∆x)3)− u(a)

= ∆xu′(a) +
1

2
(∆x)2u′′(a) +O((∆x)3. (5)

Thus, solving for u′(a) leads to:

u′(a) =
u(a+∆x)− u(a)

∆x
− 1

2
∆xu′′(a) +O((∆x)2). (6)

The forwards difference formula is obtained by neglecting terms of O(∆x) and higher in (6).
We say that the forwards difference formula is accurate to first order in ∆x because the largest
terms that have been neglected are O(∆x) in size.

The same approach can be used to derive the backwards difference formula for the first
derivative and to show that it accurate to O(∆x). The central difference formula is obtained by
considering the combination u(a+∆x)− u(a−∆x). Using the Taylor expansions in (3) shows
that

u(a+∆x)− u(a−∆x) = 2∆xu′(a) +O((∆x)3). (7)
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Importantly, the terms that are proportional to ∆xu′′(a) have cancelled out. This leads to the
central difference formula for the first derivative being second-order accurate in ∆x, which can
be seen by rearranging for u′(a) to find

u′(a) =
u(a+∆x)− u(a−∆x)

2∆x
+O((∆x)2). (8)

In general, using N points to create a finite-difference approximation of the first derivative
will lead to a formula that is accurate to order (∆x)N−1. For instance, we can combine u(a),
u(a+∆x), and u(a+2∆x) to obtain a forwards difference formula for u′(a) that is second-order
accurate. Although at this stage we do not know what linear combination of u(a), u(a+∆x), and
u(a+2∆x) to take, we can determine this algebraically. The idea is to introduce finite-difference
coefficients c1, c2, and c3 such that

c1u(a+ 2∆x) + c2u(a+∆x) + c3u(a)

∆x
= u′(a) +O((∆x)2). (9)

Using the Taylor expansions in (3a) and (4a) and collecting powers of ∆x leads to a system of
equations for the coefficients:

O((∆x)−1) : c1 + c2 + c3 = 0, (10a)

O((∆x)0) : 2c1 + c2 = 1, (10b)

O((∆x)1) : 2c1 + c2/2 = 0. (10c)

Solving this system leads to c1 = −1/2, c2 = 2, and c3 = −3/2. Hence, the second-order
forwards difference formula for the first derivative is given by

u′(a) =
−u(a+ 2∆x) + 4u(a+∆x)− 3u(a)

2∆x
+O((∆x)2). (11)

These approaches can be used to obtain formulae for higher-order derivatives as well. For
example, to obtain a central difference formula for the second derivative, we seek coefficients
such that

c1u(a+∆x) + c2u(a) + c3u(a−∆x)

(∆x)2
= u′′(a) +O((∆x)2). (12)

Using the Taylor expansions in (3) and collecting powers of ∆x lead to the following equations:

O((∆x)−2) : c1 + c2 + c3 = 0, (13a)

O((∆x)−1) : c1 − c3 = 0, (13b)

O((∆x)0) : c1 + c3 = 2. (13c)

This solution gives c1 = c3 = 1 and c2 = −2 and hence

u′′(a) =
u(a+∆x)− 2u(a) + u(a−∆x)

(∆x)2
+O((∆x)2). (14)

Note that in writing (12) we assumed that the error is O((∆x)2) in size. However, the algebraic
system in (13) only eliminates the O((∆x)−2), O((∆x)−1), and O((∆x)0) terms from (12),
which means that there could be O(∆x) terms that remain. These O((∆x)) terms would lead
to a first-order accurate central difference formula. However, the same type of serendipitous
cancellation of the O(∆x) terms that we saw when deriving the central difference formula for
the first derivative also occurs here. So, indeed, the central difference formula for the second
derivative is also accurate to second order in ∆x.
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