
Scientific Computing: ODEs — Shooting
David A.W. Barton

2019/20

Numerical shooting is a simple method for solving ordinary dif-
ferential equation boundary value problems. It relies on a suitable
numerical integrator, along with a numerical root finder.

Periodically-forced ordinary differential equations

Consider the ordinary differential equation (ODE)

mẍ + cẋ + kx = Γ sin(ωt). (1)

This is the equation of motion for a mass-spring-damper with har-
monic excitation. For a given set of parameters, it has a periodic
response (a periodic orbit/limit cycle oscillation1) where the period 1 A limit cycle is simply an isolated

periodic orbit.is given by2

2 Since the period of the response is
known, it is easier to apply numerical
shooting to periodically-forced ODEs
than general ODEs.

T =
2π

ω
. (2)

To simulate (1), it must be rewritten in first-order (vector) form, that
is

u̇1 = u2,

u̇2 =
1
m

(Γ sin(ωt)− cu2 − ku1) .
(3)

This is achieved by setting u1 = x and u2 = ẋ. Equation (3) is the
standard form required for (almost) all ODE solvers.3 Simulating

3 Some specialist mechanical engi-
neering solvers expect the differential
equations to be in the form of (1),
however, they are the exception to the
rule and very rare outside of structural
dynamics.

(3) gives the time series shown in figure 1.

0 5 10 15 20 25 30 35 40
−2

0

2

Time

u 1

Figure 1: A simulation of (3). The
blue curve shows transient behaviour
converging onto a limit cycle. A single
period of the (almost converged) limit
cycle is shown in red.

A numerical ODE solver produces the (time series) solution at
prescribed value(s) of time; that is, it provides a (vector-valued)
function4 F such that 4 The function F is the numerical in-

tegrator, e.g., the ode45 function in
Matlab, the solve_ivp or odeint
functions in Python (Scipy), and the
solve function in Julia (OrdinaryDif-
fEq.jl).

u(τ) =

[
u1(τ)

u2(τ)

]
= F(u0, τ) (4)

where u0 is a vector of initial conditions and τ is the prescribed
time.

To find limit cycles, we must solve the periodic boundary value
problem (BVP)

u0 − u(T) = 0 ⇒ u0 − F(u0, T) = 0. (5)

https://uk.mathworks.com/help/matlab/ref/ode45.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
http://docs.juliadiffeq.org/latest/tutorials/ode_example.html


scientific computing: odes - shooting 2

Equation (5) is a vector equation with the same number of dimen-
sions as u0. For this particular example u0 is an unknown two-
dimensional vector and T is a known scalar parameter5 (given by 5 In the general case T will also be

unknown, as discussed in the next
section.

(2)).

0 2 4 6

−1

0

1

2

G

Time

u 1

Figure 2: The result of an arbitrary
initial guess ũ0.

In order to solve (5) we define the function

G(u0) = u0 − F(u0, T). (6)

For an arbitrary initial guess ũ0, the value of G(ũ0) will be non-
zero (see Figure 2). However, if we are able to find a value for ũ0

such that G is close to zero6 it can be used as the inital value for a

6 Close to zero does not mean 10−6; a
good root finder will often converge
even when starting with a large value
for G.

numerical root finder such as a Newton iteration.
Hence, limit cycles of (3) can be found by passing (6) along with

a suitable initial guess ũ0 to a numerical root finder such as fsolve

in Matlab or Python (Scipy) or nlsolve in Julia.
All of the above can be trivially generalised to arbitrary periodically-

forced ODEs of any number of dimensions.

Autonomous ordinary differential equations

The previous section focussed on periodically-forced ODEs where
the time period of oscillation was giving by the period of the forc-
ing. Limit cycles in autonomous ODEs7 have the complication that 7 Autonomous ODEs have no explicit

time dependency in the equations.there is no explicit time scale for the oscillations, hence the period is
an additional unknown that must be determined as part of the non-
linear root finding step. Whenever solving systems of equations, the
general rule is that the number of equations should match the num-
ber of unknowns; this implies that an extra equation must be added
to the nonlinear root finding problem (5) in order to determine the
period T.

Consider the van der Pol equation

ẍ− µ(1− x2)ẋ + x = 0 (7)

for µ > 0 there exists a limit cycle oscillation as shown in figure 3.

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

Time

u

Figure 3: A simulation of (7) for
µ = 1. Both the solid blue curve
and the dashed blue curve are valid
solutions; since (7) has no explicit
time dependency, solutions can be
arbitrarily shifted in time.

In addition to the unknown period, the lack of explicit time de-
pendency in (7) means that solutions can be arbitrarily shifted in
time, leading to a family of possible initial values u0 for the limit
cycle rather than a single isolated value as with periodically-forced
ODEs.8

8 The existence of a family of solutions
tends to cause problems for numerical
root finders since they assume that
there exists an isolated root.

https://en.wikipedia.org/wiki/Newton%27s_method


scientific computing: odes - shooting 3

It turns out that both of these problems can be solved by in-
cluding a phase condition φ into the definition of G in (5). A phase
condition is simply a means for fixing the phase (i.e., the time shift)
of the periodic orbit; this extra constraint is sufficient to also deter-
mine the period of oscillation.

The choice of phase condition is largely arbitrary. For example,
for the van der Pol equation the phase condition x(0) = 0 can be
used; the problem with fixing a state variable with this manner is
that we cannot usually know a priori that the state variable will
obtain that value anywhere in the cycle.9 Despite this problem, 9 For example, choosing the phase

condition x(0) = 5 for the van der
Pol with µ = 1 will not work since
−2 ≤ x ≤ 2 (approximately; see
Figure 3.)

choosing a phase condition in this way is often simple and conve-
nient.

To implement a phase condition x(0) = a for some constant a, we
set

φ(u0) = u0,1 − a (8)

where u0 = [x(0), ẋ(0)] and u0,1 is the first component of the vector
u0. The function G in (6) becomes (for autonomous ODEs)

G(u0, T) =

[
u0 − F(u0, T)

φ(u0)

]
. (9)

G is thus a n + 1 dimensional vector equation (where n is the di-
mension of u0) with n + 1 inputs. This equation put into a numeri-
cal root finder to solve for both u0 and T.

Since the phase condition specified above is not always appropri-
ate, an alternative phase condition is to set

d x
d t

(0) = 0 (10)

this has the advantage that, since x is periodic, the limit cycle will
satisfy this condition at some point. It is relatively easy to imple-
ment this phase condition when ẋ is a state variable in its own right
(like both examples here), though it is slightly tricker when this is
not the case. For example, the A-B reaction equations10 10 Uppal, Ray & Poore (1974).

u̇1 = −u1 + p1(1− u1) exp(u2)

u̇2 = −u2 + p1 p2(1− u1) exp(u2)− p3u2
(11)

In this case u̇1 is not a state variable (u1 and u2 are the state vari-
ables) and so to implement d u1

d t (0) = 0 we require the slightly more
complicated phase condition

φ(u) = −u1 + p1(1− u1) exp(u2). (12)

More generally, the most widely used phase-condition is an inte-
gral phase condition.11 However, this is quite difficult to implement 11 Lecture Notes on Numerical Analy-

sis of Nonlinear Equations (in Numeri-
cal Continuation Methods for Dynam-
ical Systems, Springer), E.J. Doedel,
section 1.4.2.

for shooting methods.

https://doi.org/10.1016/0009-2509(74)80089-8
https://link.springer.com/content/pdf/10.1007/978-1-4020-6356-5_1.pdf
https://link.springer.com/content/pdf/10.1007/978-1-4020-6356-5_1.pdf

	Periodically-forced ordinary differential equations
	Autonomous ordinary differential equations

