
NumPy Notes

February 15, 2022

1 Introduction to NumPy

NumPy (Numerical Python) is the fundamental package used for scientific computing in Python.
Numpy offers a number of key features for scientific computing, in particular multi-dimensional ar-
rays (or ndarrays in NumPy speak) such as vectors or matrices, as well as the attendant operations
on these objects.

Three main reasons why NumPy is so useful for scientific computing and appears so often in data
science are:

• Speed: for example, using NumPy arrays can be ten times faster than Python’s lists. This
occurs because NumPy’s arrays are fixed in size, whereas lists can change in size. As we shall
see, the elements in NumPy arrays must all be the same type (ints or floats, for example),
unlike lists where elements can be different kinds.

• Functionality: capable of performing a huge number of fast operations on arrays, some of
which we will encounter here.

• Many packages in Python rely on NumPy. In fact, Pandas are built on top of NumPy.

In this part of the course, we will only scratch the surface of NumPy’s functionality, but as with all
things in computer programming, the more you use NumPy the more you will learn! For (much)
more information, see the online NumPy Documentation.

1.1 Importing NumPy

Before creating arrays, we need to import the NumPy package. Typically, we import the package
as np, then use np to access functions from NumPy.

[2]: import numpy as np

1.2 Vectors

[3]: # Create vector and query the resulting objects type and dimensions

A = np.array([17, 1, 156]) #Note: a common error is to write: A = np.array(17,␣
↪→1, 156). What happens when you do this?

print(type(A)) #Note: this creates a "column" vector.

1

print(A.shape) # Tells us the ndarray is of dimension 3 (x1)

<class 'numpy.ndarray'>
(3,)

Question: what do the operations A.ndim and A.size do?

In a similar way to lists, we can access the elements of the array using brackets. Notice that, unlike
MATLAB, array indices start from 0 (rather than 1).

[4]: print(A[0], A[1], A[2])

17 1 156

ndarrays are so-called mutable objects, meaning we can change their elements.

[5]: A[0] = 49
print(A)

[49 1 156]

1.3 Matrices

We can create matrices in much the same way as vectors. Again, be careful with the syntax here:
array converts sequences (signified by the use of square brackets) of sequences into two-dimensional
arrays.

[6]: B = np.array([[3, 18, 4], [21, 1, 46]])
print(B)

[[3 18 4]
[21 1 46]]

Question: how would you construct a three-dimensional array?

To access entries of the matrix, we again use the square-bracket syntax, specifying the row then
column. Remember that NumPy indexing starts from zero!

[7]: B[0, 2]

[7]: 4

[8]: B[0, 2] == 4

[8]: True

We can perform operations on ndarrays, such as taking the tranpose.

2

[9]: # Take the tranpose of B

np.transpose(B)

[9]: array([[3, 21],
[18, 1],
[4, 46]])

1.4 A note on data types

Unlike lists, which can take in multiple data types, ndarray requires all the entries to be of the same
data type. In general, when using array to define a new NumPy array, you should pay attention to
the data type of the elements in the array. If you don’t, and perform calculations with mismatching
data types, you might end up with unwanted results! For more on this, see here.

[21]: lst_1 = [27.3, "cat", [14, 5, 2]]
print(lst_1)
print(type(lst_1))

[27.3, 'cat', [14, 5, 2]]
<class 'list'>

[29]: dt_1 = np.array([14, 5, 2]) # Python assigns the data type, in this case a␣
↪→64-bit integer...

print(dt_1.dtype)

dt_2 = np.array([14.0, 5.0, 2.0]) #...and in this case, a 64-bit floating point␣
↪→number

print(dt_2.dtype)

#Alternatively, we can tell Python what type of object is in array...
dt_3 = np.array([11, 21], dtype=np.int64)
print(dt_3.dtype)

but we can also force it to be of a certain type.
dt_4 = np.array([11.1, 12.7], dtype=np.int64)
print(dt_4.dtype)
print()
print(dt_4)

int64
float64
int64
int64

[11 12]

3

Note: If you an array that included int64 and float64 numbers - the int64 numbers would be
“upcast” to float64 numbers to preserve accuracy.

1.5 In-built arrays

NumPy provides functions that create many commonly used arrays in scientific computing, rather
than laboriously typing out all the elements.

[39]: # Create a 4x3 array (4 rows, three columns) containing all zeros:

zeros = np.zeros((4,3)) # Note that the input is a tuple here...why?
print(zeros)

[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

[40]: # Similarly, create an array containing the same value. (Alternatively fulls =␣
↪→np.full((4,3), 0)

fulls = np.full((4,3), 1) #Alternatively, np.ones((4,3))
print(full)

[[1 1 1]
[1 1 1]
[1 1 1]
[1 1 1]]

[42]: # Create matrix with ones on the main diagongal.

identity = np.eye(3,4) # Note that if the syntax np.eye(N) is used, this will␣
↪→produce a SQUARE identity matrix of dimension NxN

print(identity)

[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]]

[50]: # Create a matrix whose entries are drawn from the half interval [0.0,1.0)

random = np.random.rand(4,3)
print(random)

[[0.03330037 0.65518479 0.00257132]
[0.14956798 0.63897228 0.41769437]
[0.12975192 0.63727318 0.48141184]
[0.37244747 0.20033267 0.83771455]]

4

1.6 ndarray slice indexing

In a similar way to strings and lists, we can use slice indexing to pull out subsets of those data
structures. (Essentially just means extracting part of the array.)

[51]: string = "Bristol"
string[1:4]

[51]: 'ris'

Important: The slicing syntax is a little funky. In the case of a vector, the command a[m:n] will
pull out the entries m to n-1 (not n). If you want to pull out all the values starting from index 0
to n - 1, you just have to type a[:n]. If you make n any number greater than the size of the vector,
it will pull out all the values from the starting index.

[64]: # Create an array of random integers

randInt = np.random.randint(10, size = (4,3)) # The syntax requires we specify␣
↪→the highest integer we want, and the size of the matrix

print(randInt)

[[7 8 0]
[5 8 3]
[8 1 6]
[0 4 1]]

[65]: # Pull out first two rows.
randInt[:2]

[65]: array([[7, 8, 0],
[5, 8, 3]])

[66]: # Pull out last two columns.

randInt[:,1:3]

[66]: array([[8, 0],
[8, 3],
[1, 6],
[4, 1]])

[68]: # How to extract 2x2 square matrix?

randInt[2:5, 1:3]

[68]: array([[1, 6],
[4, 1]])

5

Important note on memory allocation: If you want to extract elements from an array and
create a new array, you have to be a bit careful. Consider the following example based on the
matrix randInt above:

[69]: randInt_slice = randInt[:,1:3]
print(randInt_slice)

[[8 0]
[8 3]
[1 6]
[4 1]]

[70]: randInt_slice[0,0] = 25

[71]: randInt

[71]: array([[7, 25, 0],
[5, 8, 3],
[8, 1, 6],
[0, 4, 1]])

Note that changing a value in the extracted array, randInt_slice, has changed the corresponding
value in the randInt. This happens because randInt_slice points to the same elements in memory
as randInt. Be especially careful of memory allocation when passing vectors/matrices to functions.
Further, randInt_slice has its own indices that are different to randInt. If you wanted the slice to
be a complete (deep) copy, you have to make a whole other array as follows:

[77]: randInt_slice = np.array(randInt[:,1:3])
print(randInt_slice)
print()

randInt_slice[0,1] = 99
print(randInt_slice)
print()
print(randInt)

[[25 0]
[8 3]
[1 6]
[4 1]]

[[25 99]
[8 3]
[1 6]
[4 1]]

[[7 25 0]
[5 8 3]

6

[8 1 6]
[0 4 1]]

1.7 Basic array operations

NumPy has an enormous amount of everyday operations to perform on arrays. Here are just a few.

[84]: x = np.array([[53, 74], [2, 14]], dtype = np.int)
y = np.array([[31.3, 0.8],[12.7, 8.1]], dtype = np.float64)

print(x)
print()
print(y)

[[53 74]
[2 14]]

[[31.3 0.8]
[12.7 8.1]]

[85]: print(x + y) # Note that the int got upcast (a method that converts to the more␣
↪→precise or general definition of number) to floating point to preserve␣
↪→accuracy

[[84.3 74.8]
[14.7 22.1]]

[86]: print(x - y)

[[21.7 73.2]
[-10.7 5.9]]

[87]: print(x * y) # Note: for vectors, this is NOT the dot/scalar product (clearly␣
↪→as it didn't produce a scalar). Rather it is the element-by-element␣
↪→multiplcation of the elements of x and y

[[1658.9 59.2]
[25.4 113.4]]

[90]: print(np.sqrt(x))

[[7.28010989 8.60232527]
[1.41421356 3.74165739]]

[91]: print(np.sum(x, axis = 0)) #sum over rows

[55 88]

7

[92]: print(np.sum(x, axis = 1)) #sum over cols

[127 16]

[93]: print(x @ y) #matrix product

[[2598.7 641.8]
[240.4 115.]]

1.8 Broadcasting

On occasion, you might want to perform operations on matrices with different sizes. However, the
dimensions of your matrices should be compatible. The way NumPy handles this is through the
process of broadcasting. The easiest example of broadcasting is when you multiply an array by a
scalar as follows:

[13]: 5 * np.ones([5,5])

[13]: array([[5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5.]])

As you can see, each element in the array has been multiplied by the scalar (5). Here is a more
complex example.

[14]: # Example

A = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
B = np.array([0,1,0,2])

print(A + B)

[[1 3 3 6]
[5 7 7 10]
[9 11 11 14]]

In the example above, we have a 3x4 matrix and 4x1 vector. Clearly the operation A + B makes no
strict mathematical sense. However, broadcasting assumes the operation you are trying to perform,
in this case adding the vector B to each of the rows of the matrix A. Here NumPy recognizes that
the number of rows of B matches the number of columns of A, so adds B to each row of A.

In general, the NumPy documentation advises us:

”When operating on two arrays, NumPy compares their shapes element-wise. It starts with the
trailing dimensions and works its way forward. Two dimensions are compatible when

• they are equal, or
• one of them is 1

8

Here’s an example that doesn’t work. Why not?

[15]: C = np.array([4, 5, 1])
print(A + C)

ValueError Traceback (most recent call last)
<ipython-input-15-8d8cd82f0570> in <module>

1 C = np.array([4, 5, 1])
----> 2 print(A + C)

ValueError: operands could not be broadcast together with shapes (3,4) (3,)

1.9 End

I hope this has given you some idea of the breadth of functionality available with NumPy. In the
Worksheet, you will put much of this and more into practice, while learning how to search and read
NumPy documentation.

2 Introduction to SciPy

SciPy is a catalogue of algorithms and functions that are built on NumPy.

2.1 Solving differential equations with SciPy

[17]: import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from scipy import integrate, linalg, optimize #integration and odes, linear␣
↪→algebra, optimization/root-finding

from scipy.integrate import solve_ivp # import solve_ivp from scipy integrate

from scipy.linalg import solve # solve function for later...

Using the function solve_ivp, SciPy can solve differential equations of the form
dy
dt = f(y, t) subject to y(0) = y0,

where y, f, and y0 are vectors.

Before we do so, we need to import solve_ivp.

9

[18]: from scipy.integrate import solve_ivp

Look at the SciPy documentation for solve_ivp to see what inputs you need to provide.

Solving an SIR model

The SIR model is a rudimentary differential equation model for the number of people who are
susceptible (S), ill (I), and have recovered (R) from the spread of a contagion over time. One
version of an SIR is as follows:

dS
dt = −βSI, (1)
dI
dt = βSI − γI, (2)

dR
dt = γI. (3)

(4)

In this case, y = (S, I,R)T and f = (−βSI, βSI−γI, γI)T . Notice that adding these three equations
gives d

dt(S + I +R) = 0.

Let’s see how to set up a solver for solving the SIR model.

[22]: # Define parameters and create a function that returns the right hand side of␣
↪→the differential equations.

beta = 0.5
gamma = 0.5

def SIRode(t, y):
return [-beta*y[0]*y[1], beta*y[0]*y[1] - gamma*y[1], gamma*y[1]]

Next, create a vector of initial conditions (percentage of people who are S,␣
↪→I, and R)

y0 = [.75, .20, .05]

Set the time span for the simulation

tspan = [0, 10]

Finally, invoke the solve_ivp function to solve the differential equations.

sol = solve_ivp(SIRode, tspan, y0, t_eval = np.linspace(0, 10, num = 101))

Plot solutions

plt.plot(sol.t, sol.y.T)

10

plt.legend(['susceptible', 'infected', 'recovered'], shadow=True)
plt.xlabel('t')
plt.title('SIR model')

[22]: Text(0.5, 1.0, 'SIR model')

Try some other parameters and initial condtions and see what happens! Do the results correspond
to your intuition?

2.2 Root-finding

The optimization toolbox in SciPy provides many off-the-shelf optimization algorithms. We’ll
demonstrate finding the roots of a nonlinear function x+ exp(x).

[33]: from scipy.optimize import root

def func(x):
return x + np.exp(x)

sol = root(func, 0)

sol.x

11

[33]: array([-0.56714329])

[36]: x = np.linspace(-1, 0, num = 101)
y = x + np.exp(x)

plt.plot(x,y)
plt.grid()

2.3 Linear algebra

SciPy has loads of functionality for linear & nonlinear algebra problems. Note that NumPy also
has the former which perform just as well as SciPy for the kind of problems we’ll look at, but SciPy
has some better features under the hood that we won’t go into here.

Example: Find the cubic polynomial that passes through the points (x, y) =
(−3, 6), (−1, 3), (0, 0), (5, 4).

The general form of a cubic polynomial is y = ax3 + bx2 + cx + d. Inserting the points into this
equation gives four equations for four unknowns.

−27a+ 9b− 3c+ d = 6, (5)
−a+ b− c+ d = 3, (6)

d = 0, (7)
125a+ 25b+ 5c+ d = 4. (8)

12

We can re-write this as a matrix vector problem for the unknowns (a, b, c, d).

[10]: pts = np.array([[-3,6],[-1,3],[0,0],[5,4]]) # array of (x,y) points

A = np.array([[-27, 9, -3, 1],[-1, 1, -1, 1],[0, 0, 0, 1],[125, 25, 5, 1]])
b = np.array([6, 3, 0, 4])

x = linalg.solve(A,b)
print(x)

[0.14166667 0.06666667 -3.075 0.]

[11]: xdom = np.linspace(-4,6,num=101,endpoint = True)
y = x[0]*xdom**3 + x[1]*xdom**2 + x[2]*xdom + x[3]
plt.plot(xdom,y)
plt.plot(pts[:,0],pts[:,1],'ro')

[11]: [<matplotlib.lines.Line2D at 0x7f974c2766a0>]

[]:

13

	Introduction to NumPy
	Importing NumPy
	Vectors
	Matrices
	A note on data types
	In-built arrays
	ndarray slice indexing
	Basic array operations
	Broadcasting
	End

	Introduction to SciPy
	Solving differential equations with SciPy
	Root-finding
	Linear algebra

