NumPy and SciPy Worksheet

February 15, 2022

1 NumPy and SciPy

Further problems on using NumPy and SciPy functionalities.

1.1 NumPy

1. Slicing

Create a random 5×5 array, A, of integers in the range 1 to 10. (*Hint*: you may find the randint function helpful.) Use slicing to extract:

- (a) the first two rows of A;
- (b) the last two columns of A;
- (c) and the 3×3 matrix in the "bottom right corner" of A. Call this new matrix A_{slice} . Now change the [0,0] entry of A_{slice} to any (different) integer you want, then print both the original matrix A and A_{slice} . What do you notice? Finally, create a new matrix A_{copy} via the following command

A_copy = np.array(A_slice)

and repeat the foregoing exercise of changing one of the values of A_{copy} , printing both A and A_{copy} .

2. Array indexing

It can sometimes be useful to use an array of indices to access or change elements. Create a 4×4 array called *B* with elements of your choosing. Now, create two new 4×1 arrays as follows:

```
row_indcs = np.array([0, 1, 2, 3])
```

```
col_indcs = np.array([0, 2, 3, 1])
```

Knowing what you know about indexing of matrices in NumPy, can you work out how to extract the [0, 0], [1, 2], [2, 3], and [3, 1] entries of B? Using the += command, add 1000 to these entries and print the result.

3. Filtering

Create a function that takes in an array, mat, and two parameters, a and b, and returns an array whose values are the entries of mat that are greater than a and less than b.

Test your function by creating a *Vandermonde matrix* of size no more than 10×10 and by choosing two parameters *a* and *b*. Print the result. Is it what you expect?

(*Hint*: use the NumPy function np.vander() to efficiently create the Vandermonde matrix.)

4. Broadcasting

Broadcasting is the name used for how NumPy deals with operations with arrays of different sizes. For example, broadcasting can be a useful tool by replacing the occurrence of loops with efficient *vectorized* operations. However, broadcasting is subject to some constraints. From the NumPy documentation:

"When operating on two arrays, NumPy compares their shapes *element-wise*. It starts with the trailing dimensions and works its way forward. Two dimensions are *compatible* when

- they are equal, or
- one of them is 1''

Here are some functionining and non-functioning examples for you to try. In each of the following, compute the sum (A + B) and element-wise multiplication (A * B) of the two arrays requested in each part of the question.

- (a) Create a two-dimensional array, A, of dimension 8×3 and a one-dimensional array, B (or just a number).
- (b) Create a three-dimensional array A of dimension $5 \times 6 \times 2$ and a two-dimensional array B of size 6×2 .

Whats happens if

- in (b), A is of size $5 \times 3 \times 2$;
- instead of B, we take the transpose of B and apply the operations?

5. Finding roots of polynomial in NumPy

Research the np.roots function in NumPy to find the roots of the following polynomials.

- (a) $x^2 2x + 1 = 0$
- (b) $2x^3 + 6x^2 7x + 2 = 0$
- (c) A 10-degree polynomial whose coefficients are an array of random integers.
- (d) A 1000-degree polynomail whose coefficients are an array of random integers. (Note how fast you can do this!)

1.2 SciPy

6. Using solve_ivp, solve the differential equation dy/dt = y subject to y(0) = 1 for 0 < t < 5. (The exact solution is of course $y = \exp(t)$).

7. Solving a second order differential equation

Using solve_ivp, solve the damped harmonic oscillator

 $y'' + by' + \omega^2 y = 0$ subject to y(0) = 1 and y'(0) = 0 for 0 < t < 10,

where b is the damping coefficients and ω is the natural frequency.

Hint: by defining y' = u, write the second-order differential equation above as a *system* of first-order differential equations for the unknows y and u (similar to the SIR example in the notes).

Recalling the syntax

```
sol = solve_ivp(func, t_span, y0, t_eval = np.linspace(0, tend, num = 101))
```

use the following code snippet to plot the *phase portrait* of the solution for different values of the damping parameter b:

plt.plot(sol.y[1,:], sol.y[0,:])
plt.xlabel('y')
plt.ylabel('dy/dt')
plt.title('Damped harmonic oscillator')
Do the results correspond to your physical intuition?