Binary Synchronization of Randomly Forced Oscillators #
Jeremy Worsfold
11:10 Wednesday in 2Q49.
Part of the Networks and complex systems in society session.
Abstract #
Synchronisation of non-locally coupled oscillators has been extensively studied since Kuramoto’s model of oscillators was proposed in 1975. From fireflies to pedestrians on a bridge, this model is widely applicable in modelling the collective behaviour of large groups of individuals. This and other traditional models of synchronisation are predicated on deterministic forcing between individuals. Intrinsic randomness of oscillators has been incorporated into the Kuramoto model but this invariably causes a decrease in synchronization. In this talk we will show that, while noise usually creates disorder, systems can reach order through randomness. We propose and analyse a model that reproduces many of the common features of the Kuramoto model around the incoherent state but exhibits binary phase locking instead of full coherence. Using recently developed methods we are able to find exact solutions for the stationary, synchronized state. We also find approximate low dimensional dynamics for this model which qualitatively describes the full system of oscillators.